

Georges-Köhler Allee, Geb. 51 D-79110 Freiburg lausen@informatik.uni-freiburg.de schaetzle@informatik.uni-freiburg.de zablocki@informatik.uni-freiburg.de

Data Models and Query Languages Summerterm 2013

3. Exercise Sheet: Conjunctive Queries, Chase & Datalog

Discussion: 17.05.2013

Submission Guidlines: This is a mandatory exercise sheet where you have to get 50% of the points to qualify for the exam! Hand in your solutions at the beginning of the tutorial on 17.05.2013.

Exercise 1 (Evaluation of Conjunctive Queries, 1+1+1+1=4 points)

Consider the following sample instantiation *I* of the schema from Exercise Sheet 1.

Sales	PName	SNar	ne	CName	Part	t PName	Туре
	Audi A Audi A Audi A Suzuki	8 Auto 8 Auto	haus Wenz haus Klein haus Wenz orsport AG	Meier Meier Smith Hofmann	<u></u>	Audi A8 Audi A7 Suzuki GSX	Auto Auto Motorrad
	Cust	CName	CAddr		Supp	SName	SAddr
		Meier	Freiburg			Autohaus Wenz	Freiburg
		Smith	Freiburg			Autohaus Klein	Mannheim
		Hofmann	Mannheim			Motorsport AG	Mannheim

Give the evaluation result of the following queries on instance *I* and informally describe their meaning. Note that constants inside the queries are distinguished by *italic* font.

a) q_1 : ans(C) \leftarrow Sales(P,S,C), Cust(C,Freiburg), Supp(S,Freiburg)

b) q_2 : ans(S,P) \leftarrow Sales(P,S,Meier), Supp(S,Mannheim), Part(P,Auto)

c) q_3 : ans(S,P) \leftarrow Sales(P,S,Meier), Supp(S,Mannheim), Part(P2,Auto)

d) q_4 : ans(C1,C2) \leftarrow Cust(C1,Freiburg), Cust(C2,Freiburg), Sales(P1,S1,C1), Sales(P2,S2,C2), Supp(S1,X), Supp(S2,X)

Exercise 2 (Containment, 3+2=5 points)

Let *E*(*src*, *dest*) denote the edge relation of a directed graph and consider the following conjunctive queries.

- $Q_1 : ans(X, Y) \leftarrow E(X, Y), E(Y, Z)$
- $Q_2 : ans(X, Y) \leftarrow E(X, W), E(W, Y)$
- $Q_3 : ans(X, Y) \leftarrow E(X, Y), E(X, U), E(U, Y)$
- a) Check if $Q_i \sqsubseteq Q_j$ forall $i \ne j$, $1 \le i, j \le 3$. Whenever containment does not hold for a pair of queries, provide a sample instance that proves violation.
- b) Show that $\{Q_1, Q_2\} \equiv \{Q_1, Q_2, Q_3\}$ holds.

Exercise 3 (Containment in Graph Cycles, 3 points)

Consider the infinite sequence of Conjunctive Queries Q_1, Q_2, \ldots , where

 $Q_i: ans(X) \leftarrow E(X, Y_1), E(Y_1, Y_2), \dots, E(Y_{i-1}, Y_i), E(Y_i, X)$

 Q_i represents a cycle of length i + 1 in a directed graph with edge relation E(src, dest). Which containment relationships exist between the Q_i ?

Exercise 4 (Chase Termination, 3 points)

Let E(src,dest) store the edge relation of a graph and let Q: $ans(X) \leftarrow E(X,Y)$. Find a tuple-generating dependency α such that the chase of Q with $\Sigma := {\alpha}$ does not terminate.

Exercise 5 (Chase and Minimization, 1+2+1=4 points)

Consider the following database schema with relations

Person(SSN,Name) Professor(SSN,Name) Course(CourseName,SSN) Enrolled(CourseName,Participant)

where **Person** stores persons including social security number (SSN) and name, **Professor** stores professors including social security number and name, **Course** contains course names and the SSN of the lecturer, and **Enrolled** stores course inscriptions. Further let $\Sigma := \{\alpha_1, \alpha_2, \alpha_3\}$ be the set of the following constraints.

 $alpha_1 := \forall s, n (Professor(s,n) \rightarrow Person(s,n))$ $\alpha_2 := \forall c, s, n (Course(c,s) \land Person(s,n) \rightarrow Professor(s,n))$ $\alpha_3 := \forall c, s (Course(c,s) \rightarrow \exists p \ \texttt{Enrolled}(c,p))$

Further consider the Conjunctive Query

Q: $ans(C,N) \leftarrow Professor(S,N), Course(C,S)$

- a) Describe the constraints informally.
- b) Compute Q^{Σ} .
- c) Compute starting from Q^{Σ} the set of all minimal Σ -equivalent queries.

Exercise 6 (Datalog, Graph Properties, 1+1+1+1=4 points)

Consider a directed graph which is given by *E*(*src*, *dest*). Give a Datalog program which computes the following relations:

- a) Odd(X, Y), which holds if there is a path with odd length from X to Y.
- b) *Oddcycle*(*X*), there is a cycle with odd length through *X*.
- c) *Evencycle*(*X*), there is cycle with even length through *X*.
- d) *Bothcycles*(*X*), there are cycles with even length and cycles with odd length through *X*.

Exercise 7 (Datalog, Family Tree, 3 points)

Let parent(X, Y) be a family tree with root p. Give a Datalog program which computes the predicates same - generation(X, Y), sibling(X, Y) and cousin(X, Y).

- *parent*(*X*, *Y*) holds if *Y* is a parent of *X*.
- *same generation*(*X*, *Y*) holds, if distance between *X* and *p* is the same as distance between *Y* and *p*.
- *sibling*(*X*, *Y*) holds, if *X* and *Y* have the same parents.
- *cousin*(*X*, *Y*) holds, if *X* and *Y* belong to the same generation but are not siblings.

Exercise 8 (Datalog, Stable Models, 2+2=4 points)

Consider the following Datalog program:

$$\sqcap: win(X) \leftarrow move(X, Y), \neg win(Y)$$

with EDBs:

- {move(1, 2), move(2, 3), move(3, 1), move(3, 4)}
- {*move*(1, 2), *move*(2, 3), *move*(3, 1), *move*(3, 4), *move*(4, 5)}
- a) Give all stable models.
- b) Give the well-founded models.